监控系统安装公司称视频大数据平台一般以分布式集群的方式进行建设,集群能够对数据处理进行负载均衡,同时,集群能够方便地进行扩展,能够通过增加集群节点来提升平台整体性能。数据存储需要考虑以下几个方面: 哪些数据需要保存到视频监控系统大数据平台;如果对原有系统进行改造,原有系统中已存在的那些数据该如何处理;如何保证数据的可靠性。视频大数据平台采用分布式计算,同时结合内存加速、负载均衡、本地处理,提供高效的数据计算能力。
视频大数据处理系统,在应对视频大数据处理中的存储问题,采用了分布式存储方式,提高了读写速度,并扩大了存储容量;在应对视频大数据处理中的计算问题,采用分布式计算系统,提高了数据分析和挖掘能力。视频大数据处理系统总体架构如下图所示,包括资源层、平台层、应用层三个层次。
资源层:包括IT基础资源、数据资源、视频资源等。能够产生、存储、处理海量数据的资源如过车数据、人脸数据、案事件数据等。
平台层:即视频大数据平台,包括数据存储、数据处理、数据迁移、集群管理等功能,同时为上层应用提供接口。视频大数据平台地位类似于数据库,但是它比数据库的处理能力要强大很多,可以对海量数据进行处理。
应用层:基于视频大数据平台提供的高效数据处理服务,行业应用平台(公安、交通、司法、能源、教育等)能够为用户提供海量数据的高效存储、检索、分析和统计等功能。
大数据在各个领域都已有了较为成熟的应用。在视频监控领域,大数据时代正悄悄来临。在城市安全、交通管理中将部署大量的视频监控设备,这些视频监控设备将产生大量的视频及其相关的数据,如交通卡口数据达到十亿条甚至更大级别,人像库的数据量达到千万条甚至更大级别。
数据挖掘能力是关键
针对如此大级别的数据量,当前系统会逐渐暴露出数据检索速度越来越慢、数据统计、分析效率越来越低等问题,这些问题都需要一个成熟的技术来解决。在智慧城市中,城市安全、智慧交通等的迅速发展,城市中非结构化的数据量越来越大。视频大数据技术侧重帮助各类客户从日趋海量的非结构化视频数据中快速发掘高价值的信息,协助客户提升其决策的效率和精准度。因此,视频大数据的处理好坏成了客户关注的焦点,视频大数据的处理技术也成了厂家能力的体现。
针对结构化或半结构化数据的数据量特别大的场景,大数据平台作为应用平台的支撑平台,提供海量数据的高效处理能力。通过大数据平台,应用能够对这些数据进行高效地存储、检索(秒级)、分析和统计,切实地提高效率,提升用户体验度。
视频监控进入网络化时代以后,越来越多IT新兴技术融人其中,大数据技术在视频监控领域的广阔发展路径已经显现。视频大数据技术能够解决当前系统处理海量视频及相关数据能力不足的问题,帮助客户从海量的视频数据中快速挖掘高价值的信息,协助客户提升其决策的效率和精准度。可以预见在未来的“智慧城市”建设中,视频的数据量会爆发性增长,
对海量视频数据处理系统的要求会越来越高,对视频数据挖掘的能力要求也会越来越强。